Contrastive Learning Is Spectral Clustering On Similarity Graph

Zhiquan Tan*

Yifan Zhang*

Jingqin Yang*

Yang Yuan

Tsinghua University

Contrastive learning: SimCLR

- Given x, sample two augmentations of x
 - $Dog \rightarrow$ (cropped dog, flipped dog)
- Given 2N augmentation pairs, what do we hope?
 - InfoNCE loss: $L(q, p_1, \{p_i\}_{i=2}^N) = -\log \frac{\exp(-\|f(q) f(p_1)\|^2/2\tau)}{\sum_{i=1}^N \exp(-\|f(q) f(p_i)\|^2/2\tau)}$
 - Similar images are mapped together, different images are far apart

- Representation \rightarrow

 \boldsymbol{x}

 $f(\cdot)$

 x_j

(h) Gaussian noise

(g) Cutout

(i) Gaussian blur

(j) Sobel filtering

 h_i

 $ilde{x}_i$

 $f(\cdot)$

Why does it work?

- Haochen et al. 2021 proved that, replace InfoNCE with spectral loss, contrastive learning is approximately spectral clustering:
 - $\hat{F} = F^* \cdot diag(\left[\sqrt{\gamma_1}, \cdots, \sqrt{\gamma_k}\right])R$
 - Adds additional linear transformations to F^*

$$\mathcal{L}(f) = -2 \cdot \mathbb{E}_{x,x^+} \left[f(x)^\top f(x^+) \right] + \mathbb{E}_{x,x^-} \left[\left(f(x)^\top f(x^-) \right)^2 \right],$$

- We prove:
 - The standard InfoNCE (not spectral loss), does exactly spectral clustering (no additional transformation) on the similarity graph
 - This equivalence is exact!

Synthetic Experiments

Illustration of our analysis

Proof sketch

- Given *n* objects $X_1, \cdots, X_n \in \chi$
 - Including all augmented images, finite
- Augmentation pair (X_i, X_j) defines a similarity edge in π
 - $\pi_{i,j} = \operatorname{Prob}(X_i, X_j \text{ sampled together})$
 - *X_i*, *X_j* are similar **semantically**
 - However, X_i and X_j are not similar in pixel space (large ℓ_p distance)
- Question:
 - Can we find an ideal space, such that semantic similarity is captured naturally?
 - Z = f(X)
 - Various solutions! Today: Reproducing Kernel Hilbert Space.

Reproducing kernel Hilbert space

- Given Z_i, Z_j , consider $\phi: Z \to H$, such that
 - $k(Z_i, Z_j) = \langle \phi(Z_i), \phi(Z_j) \rangle_H$
 - Inner product in RKHS H, is the kernel function in Z
 - H can have infinite dimension, we do not need to compute ϕ explicitly
- Similarity between Z_i , Z_j defined in H
 - Well defined, well shaped
 - Denote similarity matrix as K_Z
- Question: how to learn *f*?
 - When n is huge, hard to design the loss
 - Too many edges in between

Gram matrix with kernel $k = \mathcal{Z}$

Markov random fields (MRF)

- Given graph π , we may sample unweighted subgraphs from π • $W_{i,j} \in \{0,1\}$
- The score of W: $s(W, \pi) = \prod_{(i,j) \in [n]^2} \pi_{i,j}^{W_{i,j}}$
 - Given π , which is the score of W?
 - Multiple score of each edge together
- Add restriction: $\Omega(W) \prod_{(i,j) \in [n]^2} \pi_{i,j}^{W_{i,j}}$
 - For example, $\Omega(W) = 1$, if and only if each node in W has out-deg=1
- $P(W;\pi) \propto \Omega(W) \prod_{(i,j) \in [n]^2} \pi_{i,j}^{W_{i,j}}$
 - Each W is sampled with probability proportional to its score

Sampling subgraphs for both π and K_Z

Gram matrix with kernel $k \in \mathcal{Z}$

How to compare W_X and W_Z ?

- W_X and W_Z are random variables based on π and K_Z
- Cross entropy loss
 - $H_{\pi}^{k}(Z) = -E_{W_{X} \sim P(\cdot;\pi)}[\log P(W_{Z} = W_{X}; K_{Z})]$
 - Sample W_X from $P(\cdot; \pi)$, and check the probability that $W_Z = W_X$
- $H^k_{\pi}(Z)$ is equivalent to
 - InfoNCE loss
 - running spectral clustering (Van Assel et al. 2022)
- Therefore
 - Optimizing InfoNCE loss = running spectral clustering

$H^k_{\pi}(Z)$ is equivalent to InfoNCE

- $H_{\pi}^{k}(Z) = -E_{W_{X} \sim P(\cdot;\pi)}[\log P(W_{Z} = W_{X}; K_{Z})]$
- $W_X \sim P(\cdot; \pi)$ means we sample each node with its similarity neighbor in $\pi \Rightarrow$ Data augmentation step
- For unitary out-deg W, $W_i \sim M\left(1, \frac{\pi_i}{\sum_j \pi_{i,j}}\right)$.
 - Every row *i* is independent!
 - $\Rightarrow H_{\pi}^{k}(Z) = -\sum_{i} E_{W_{X,i}} \left[\log P(W_{Z,i} = W_{X,i}; K_Z) \right]$
 - $W_{X,i}$ is *i*-th row of W_x with single 1 (to *j*), other entries are 0. Same for $W_{Z,i}$

$H^k_{\pi}(Z)$ is equivalent to InfoNCE

• InfoNCE =
$$-\sum_{i=1}^{N} \log \frac{\exp(-\|f(X_i) - f(X_{i'})\|^2 / 2\tau)}{\sum_{j=1}^{N} \exp(-\|f(X_i) - f(X_j)\|^2 / 2\tau)}$$

• $\log \frac{\exp(-\|f(X_i) - f(X_{i'})\|^2 / 2\tau)}{\sum_{j=1}^{N} \exp(-\|f(X_i) - f(X_j)\|^2 / 2\tau)} = -\log \frac{k(Z_i, Z_{i'})}{\|K_{Z,i}\|_1}$

• Let
$$Q_i = \frac{K_{Z,i}}{\|K_{Z,i}\|_1}$$
, the distribution of $P(\cdot; K_Z)$

- InfoNCE= $-\sum_{i=1}^{N} \log Q_{i,i'}$
- *i*, *i*' are sampled in data augmentation, so we are optimizing

$$-\sum_{i=1}^{N} \sum_{i'=1}^{Pr(W_{x,i,i'} = 1) \log Q_{i,i'}}$$
$$= -\sum_{i}^{N} \frac{E_{W_{x,i}}[\log P(W_{Z,i} = W_{X,i}; K_Z)]}{E_{W_{X,i}}[\log P(W_{Z,i} = W_{X,i}; K_Z)]} = H_{\pi}^{k}(Z)$$

$H_{\pi}^{k}(Z)$ is equivalent to spectral clustering (Van Assel et al. 2022)

•
$$H_{\pi}^{k}(Z) = \min_{Z} - \sum_{(i,j) \in [n]^{2}} \overline{W_{i,j}} \log k(Z_{i} - Z_{j}) + \log S(Z)$$

- $\overline{W} = E_{W_X \sim P(\cdot;\pi)}[W_X]$
- $S(Z) = \sum_{W} s(Z, W)$, punish solutions like Z = 0, as 0 is valid for all W, which gives larger P(Z)
- Since k is Gaussian, this becomes $\min_{Z} tr(Z^{T}L(\pi)Z) + \log S(Z)$
 - Since $E_{W_X \sim P(\cdot;\pi)}[L(W_X)] = L(\pi)$
 - Role of projection head?

Can we replace Gaussian kernel?

• Ψ_i is the similarity between the query and the contrastive sample

Minimize the worst case assignment diversity

(P1)
$$\max_{\boldsymbol{\alpha}} H(\boldsymbol{\alpha})$$

s.t. $\boldsymbol{\alpha}^{\top} \mathbf{1}_{n} = 1, \alpha_{1}, \dots, \alpha_{n} \ge 0$
 $\psi_{1} - \sum_{i=1}^{n} \alpha_{i} \psi_{i} \le 0$

Introducing au as Lagrangian dual variable will give the following

$$t = - au \log \frac{\exp\left(\frac{1}{ au}\psi_1
ight)}{\sum_{i=1}^n \exp\left(\frac{1}{ au}\psi_i
ight)}$$

New Losses with Our Anlysis

• The kernel used in representation space can be changed. We use kernel in expoential family and construct new ones.

Simple Sum Kernel:

$$K(x_i, x_j) := \exp(-\|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2^2 / \tau_2) + \exp(-\|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2^1 / \tau_1)$$

Concatenation Sum Kernel:

$$K(x_i, x_j) := \exp(-\|\boldsymbol{f}(\mathbf{x}_i)[0:n] - \boldsymbol{f}(\mathbf{x}_j)[0:n]\|_2^2 / \tau_2) + \exp(-\|\boldsymbol{f}(\mathbf{x}_i)[n:2n] - \boldsymbol{f}(\mathbf{x}_j)[n:2n]\|_2^1 / \tau_1)$$

Method	CIFAR-10		CIFAR-100		TinyImageNet	
	200 epochs	400 epochs	200 epochs	400 epochs	200 epochs	400 epochs
SimCLR (repro.)	88.13	90.59	62.67	66.23	34.03	37.86
Laplacian Kernel	89.31	91.05	63.17	66.06	35.92	38.76
$\gamma = 0.5$ Exponential Kernel	89.00	91.23	63.47	65.71	34.21	38.70
Simple Sum Kernel	89.80	91.76	66.73	68.62	36.60	39.38
Concatenation Sum Kernel	89.89	91.28	66.09	68.53	35.92	38.76

Table 1: Results on CIFAR-10, CIFAR-100, and TinyImageNet datasets.

Extension to CLIP

- CLIP samples *N* image-text pairs, and maps every image with its matched text (and vice versa)
 - Using InfoNCE loss
- We prove:
 - CLIP runs spectral clustering on this bipartite graph
- Extension:
 - Explaining LaCLIP

 $\mathcal{L}_{I} := -\sum_{i=1}^{N} \log \frac{\exp\left(\sin\left(f_{I}\left(\operatorname{aug}_{I}\left(x_{I}^{i}\right)\right), f_{T}\left(\operatorname{aug}_{T}\left(x_{T}^{i}\right)\right)\right)/\tau\right)}{\sum_{k=1}^{N} \exp\left(\sin\left(f_{I}\left(\operatorname{aug}_{I}\left(x_{I}^{i}\right)\right), f_{T}\left(\operatorname{aug}_{T}\left(x_{T}^{i}\right)\right)\right)/\tau\right)},$

Thank you!