Contrastive Learning Is Spectral Clustering On Similarity Graph

Zhiquan Tan* Yifan Zhang* Jingqin Yang* Yang Yuan

Tsinghua University

Contrastive learning: SimCLR

- Given x , sample two augmentations of x
	- Dog \rightarrow (cropped dog, flipped dog)
- Given $2N$ augmentation pairs, what do we hope?

 (g) Cutout

- InfoNCE loss: $L(q, p_1, \{p_i\}_{i=2}^N) = -\log \frac{\exp(-||f(q) f(p_1)||^2 / 2\tau)}{\sum_{i=1}^N \exp(-||f(q) f(p_i)||^2 / 2\tau)}$ $\sum_{i=1}^N \exp(-\|f(q)-f(p_i)\|^2/2\tau)$
- Similar images are mapped together, different images are far apart

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(h) Gaussian noise

(i) Gaussian blur

(i) Sobel filtering

Why does it work?

- Haochen et al. 2021 proved that, replace InfoNCE with spectral loss, contrastive learning is approximately spectral clustering:
	- $\hat{F} = F^* \cdot diag([\sqrt{\gamma_1}, \cdots, \sqrt{\gamma_k}])R$
	- Adds additional linear transformations to F^*

$$
\mathcal{L}(f) = -2 \cdot \mathbb{E}_{x,x^+} \left[f(x)^\top f(x^+) \right] + \mathbb{E}_{x,x^-} \left[\left(f(x)^\top f(x^-) \right)^2 \right],
$$

- We prove:
	- The standard InfoNCE (not spectral loss), does exactly spectral clustering (no additional transformation) on the similarity graph
	- This equivalence is exact!

Synthetic Experiments

Illustration of our analysis

Proof sketch

- Given *n* objects $X_1, \dots, X_n \in \chi$
	- Including all augmented images, finite
- Augmentation pair (X_i, X_j) defines a similarity edge in π
	- $\pi_{i,j}$ =Prob(X_i, X_j sampled together)
	- X_i , X_j are similar **semantically**
	- However, X_i and X_j are not similar in pixel space (large ℓ_p distance)
- Question:
	- Can we find an ideal space, such that semantic similarity is captured naturally?
		- $Z = f(X)$
	- Various solutions! Today: Reproducing Kernel Hilbert Space.

Reproducing kernel Hilbert space

- Given Z_i , Z_j , consider $\phi: Z \rightarrow H$, such that
	- $k(Z_i, Z_i) = \langle \phi(Z_i), \phi(Z_i) \rangle_H$
	- Inner product in RKHS H, is the kernel function in Z
	- *H* can have infinite dimension, we do not need to compute ϕ explicitly
- Similarity between Z_i , Z_j defined in H
	- Well defined, well shaped
	- Denote similarity matrix as K_z
- Question: how to learn f ?
	- When n is huge, hard to design the loss
	- Too many edges in between

Markov random fields (MRF)

- Given graph π , we may sample unweighted subgraphs from π • $W_{i,j} \in \{0,1\}$
- The score of W : $s(W, \pi) = \Pi_{(i,j) \in [n]^2} \pi_{i,j}^W$ $W_{i,j}$
	- Given π , which is the score of W ?
		- Multiple score of each edge together
- Add restriction: $\Omega(W)\Pi_{(i,j)\in [n]^2}\pi_{i,j}^{W}$ $W_{i,j}$
	- For example, $\Omega(W) = 1$, if and only if each node in W has out-deg=1
- $P(W; \pi) \propto \Omega(W) \Pi_{(i,j)\in [n]^2} \pi_{i,j}^W$ $W_{i,j}$
	- \bullet Each W is sampled with probability proportional to its score

Sampling subgraphs for both π and K_z

How to compare W_X and W_Z ?

- W_X and W_Z are random variables based on π and K_Z
- Cross entropy loss
	- $H^k_{\pi}(Z) = -E_{W_X \sim P(\cdot; \pi)}[\log P(W_Z = W_X; K_Z])$
	- Sample W_X from $P(\cdot; \pi)$, and check the probability that $W_Z = W_X$
- $H_\pi^k(Z)$ is equivalent to
	- InfoNCE loss
	- running spectral clustering (Van Assel et al. 2022)
- Therefore
	- Optimizing InfoNCE loss = running spectral clustering

$H_\pi^k(Z)$ is equivalent to InfoNCE

- $H_{\pi}^{k}(Z) = -E_{W_{X} \sim P(\cdot; \pi)}[\log P(W_{Z} = W_{X}; K_{Z})]$
- $W_x \sim P(\cdot; \pi)$ means we sample each node with its similarity neighbor in $\pi \Rightarrow$ Data augmentation step
- For unitary out-deg W , $W_i \thicksim M$ $\left($ 1, π_i $\sum_{\boldsymbol{j}} \pi_{\boldsymbol{i},\boldsymbol{j}}$.
	- \bullet Every row i is independent!
	- $\Rightarrow H_{\pi}^{k}(Z) = -\sum_{i} E_{W_{X,i}} [\log P(W_{Z,i} = W_{X,i}; K_{Z})]$
	- $W_{X,i}$ is *i*-th row of W_x with single 1 (to j), other entries are 0. Same for $W_{Z,i}$

$H_\pi^k(Z)$ is equivalent to InfoNCE

•
$$
\text{InfoNCE} = -\sum_{i=1}^{N} \log \frac{\exp(-||f(X_i) - f(X_{i'})||^2 / 2\tau)}{\sum_{j=1}^{N} \exp(-||f(X_i) - f(X_j)||^2 / 2\tau)}
$$

• $\log \frac{\exp(-||f(X_i) - f(X_{i'})||^2 / 2\tau)}{\sum_{j=1}^{N} \exp(-||f(X_j) - f(X_j)||^2 / 2\tau)} = -\log \frac{k(Z_i, Z_{i'})}{||K_{Z,i}||_1}$

• Let
$$
Q_i = \frac{k_{Z,i}}{\|K_{Z,i}\|_1}
$$
, the distribution of $P(\cdot; K_Z)$

- InfoNCE= $-\sum_{i=1}^{\bar{N}} \log Q_{i,i'}$
- \cdot *i*, *i'* are sampled in data augmentation, so we are optimizing $N \overset{\smash{\smash[b]{\mathop{\scriptstyle\circ}}}}{\mathop{\scriptstyle\circ}} N$

$$
-\sum_{i=1}^{n} \sum_{i'=1}^{n} \Pr(W_{x,i,i'} = 1) \log Q_{i,i'}
$$

=
$$
-\sum_{i} E_{W_{X,i}} [\log P(W_{Z,i} = W_{X,i}; K_Z)] = H_{\pi}^{k}(Z)
$$

$H_\pi^k(Z)$ is equivalent to spectral clustering (Van Assel et al. 2022)

•
$$
H_{\pi}^{k}(Z) = \min_{Z} -\sum_{(i,j)\in[n]^{2}} \overline{W_{i,j}} \log k(Z_{i} - Z_{j}) + \log S(Z)
$$

- $W = E_{W_X \sim P(\cdot; \pi)}[W_X]$
- $S(Z) = \sum_W s(Z, W)$, punish solutions like $Z = 0$, as 0 is valid for all W, which gives larger $P(Z)$
- \bullet Since k is Gaussian, this becomes min Z $tr(Z^T L(\pi)Z) + \log S(Z)$
	- Since $E_{W_X \sim P(\cdot; \pi)}[L(W_X)] = L(\pi)$
	- Role of projection head?

Can we replace Gaussian kernel?

 \cdot \mathcal{V}_i is the similarity between the query and the contrastive sample

Minimize the worst case assignment diversity

(P1)
$$
\max_{\alpha} H(\alpha)
$$

s.t. $\alpha^{\top} 1_n = 1, \alpha_1, ..., \alpha_n \ge 0$
 $\psi_1 - \sum_{i=1}^n \alpha_i \psi_i \le 0$

Introducing τ as Lagrangian dual variable will give the following

$$
: -\tau \log \frac{\exp \left(\frac{1}{\tau} \psi_1 \right)}{\sum_{i=1}^n \exp \left(\frac{1}{\tau} \psi_i \right)}
$$

New Losses with Our Anlysis

• The kernel used in representation space can be changed. We use kernel in expoential family and construct new ones.

Simple Sum Kernel:

$$
K(x_i, x_j) := \exp(-\|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2^2/\tau_2) + \exp(-\|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2^1/\tau_1)
$$

Concatenation Sum Kernel:

$$
K(x_i, x_j) := \exp(-\|f(\mathbf{x}_i)[0:n] - f(\mathbf{x}_j)[0:n]\|_2^2/\tau_2) + \exp(-\|f(\mathbf{x}_i)[n:2n] - f(\mathbf{x}_j)[n:2n]\|_2^1/\tau_1)
$$

Method	CIFAR-10		CIFAR-100		TinyImageNet	
	200 epochs	400 epochs	200 epochs	400 epochs	200 epochs	400 epochs
SimCLR (repro.)	88.13	90.59	62.67	66.23	34.03	37.86
Laplacian Kernel	89.31	91.05	63.17	66.06	35.92	38.76
$\gamma = 0.5$ Exponential Kernel	89.00	91.23	63.47	65.71	34.21	38.70
Simple Sum Kernel	89.80	91.76	66.73	68.62	36.60	39.38
Concatenation Sum Kernel	89.89	91.28	66.09	68.53	35.92	38.76

Table 1: Results on CIFAR-10, CIFAR-100, and TinyImageNet datasets.

Extension to CLIP

- \bullet CLIP samples N image-text pairs, and maps every image with its matched text (and vice versa)
	- Using InfoNCE loss
- We prove:
	- CLIP runs spectral clustering on this bipartite graph
- Extension:
	- Explaining LaCLIP

 $\mathcal{L}_I := -\sum_{i=1}^N \log \frac{\exp \left(\operatorname{sim}\left(f_I\left(\operatorname{aug}_I\left(x^i_I\right)\right), f_T\left(\operatorname{aug}_T\left(x^i_T\right)\right)\right) / \tau\right)}{\sum_{k=1}^N \exp \left(\operatorname{sim}\left(f_I\left(\operatorname{aug}_I\left(x^i_I\right)\right), f_T\left(\operatorname{aug}_T\left(x^k_T\right)\right)\right) / \tau\right)},$

Thank you!