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Contrastive learning: SimCLR
• Given 𝑥, sample two augmentations of 𝑥
• Dog à (cropped dog, flipped dog)

• Given 2𝑁 augmentation pairs, what do we hope?
• InfoNCE loss: L 𝑞, 𝑝!, 𝑝" "#$% = − log &'((* + , *+ -! "/$/)

∑#$!
% &'( * + , *+ -# "/$/

• Similar images are mapped together, different images are far apart 



Why does it work?
• Haochen et al. 2021 proved that, replace InfoNCE with spectral 

loss, contrastive learning is approximately spectral clustering：
• *𝐹 = 𝐹∗ ⋅ 𝑑𝑖𝑎𝑔 𝛾!, ⋯ , 𝛾3 𝑅
• Adds additional linear transformations to 𝐹∗

• We prove:
• The standard InfoNCE (not spectral loss), does exactly spectral clustering 

(no additional transformation) on the similarity graph
• This equivalence is exact!



Synthetic Experiments



Illustration of our analysis



Proof sketch

• Given 𝑛 objects 𝑋!, ⋯ , 𝑋" ∈ 𝜒
• Including all augmented images, finite

• Augmentation pair (𝑋# , 𝑋$) defines a similarity edge in 𝜋
• 𝜋",5 =Prob(𝑋", 𝑋5 sampled together)
• 𝑋", 𝑋5 are similar semantically 
• However, 𝑋" and 𝑋5 are not similar in pixel space (large ℓ- distance)

• Question: 
• Can we find an ideal space, such that semantic similarity is captured 

naturally?
• 𝑍 = 𝑓(𝑋)

• Various solutions! Today: Reproducing Kernel Hilbert Space.



Reproducing kernel Hilbert space

• Given 𝑍# , 𝑍$ , consider 𝜙: 𝑍 → 𝐻, such that 
• 𝑘 𝑍", 𝑍5 =< 𝜙 𝑍" , 𝜙 𝑍5 >6
• Inner product in RKHS H, is the kernel function in Z
• 𝐻 can have infinite dimension, we do not need to compute 𝜙 explicitly

• Similarity between 𝑍# , 𝑍$ defined in 𝐻
• Well defined, well shaped
• Denote similarity matrix as 𝐾7

• Question: how to learn 𝑓?
• When 𝑛 is huge, hard to design the loss
• Too many edges in between



Markov random fields (MRF)

• Given graph 𝜋, we may sample unweighted subgraphs from 𝜋
• 𝑊",5 ∈ {0,1}

• The score of 𝑊: s W, 𝜋 = Π #,$ ∈ " !𝜋#,$
-",$

• Given 𝜋, which is the score of 𝑊? 
• Multiple score of each edge together

• Add restriction: Ω(𝑊)Π #,$ ∈ " !𝜋#,$
-",$

• For example, Ω 𝑊 = 1, if and only if each node in 𝑊 has out-deg=1

• 𝑃 𝑊;𝜋 ∝ Ω(𝑊)Π #,$ ∈ " !𝜋#,$
-",$

• Each 𝑊 is sampled with probability proportional to its score



Sampling subgraphs for both 𝜋 and 𝐾!



How to compare 𝑊" and 𝑊!?

• 𝑊. and 𝑊/ are random variables based on 𝜋 and 𝐾/
• Cross entropy loss
• 𝐻83 𝑍 = −𝐸9&∼; ⋅;8 log 𝑃 𝑊7 = 𝑊>; 𝐾7
• Sample 𝑊> from 𝑃 ⋅; 𝜋 , and check the probability that 𝑊7 = 𝑊>

• 𝐻01(𝑍) is equivalent to 
• InfoNCE loss
• running spectral clustering (Van Assel et al. 2022)

• Therefore
• Optimizing InfoNCE loss = running spectral clustering



𝐻#$(𝑍) is equivalent to InfoNCE
• 𝐻01 𝑍 = −𝐸-%∼3 ⋅;0 log 𝑃 𝑊/ = 𝑊.; 𝐾/
• 𝑊. ∼ 𝑃 ⋅; 𝜋 means we sample each node with its similarity 

neighbor in 𝜋  ⇒  Data augmentation step

• For unitary out-deg 𝑊, 𝑊# ∼ 𝑀 1, 0"
∑$ 0",$

. 

• Every row 𝑖 is independent!
• ⇒ 𝐻83 𝑍 = −∑"𝐸9&,# log 𝑃 𝑊7," = 𝑊>,"; 𝐾7
• 𝑊>," is 𝑖-th row of 𝑊? with single 1 (to 𝑗), other entries are 0. Same for 
𝑊7,"



𝐻#$(𝑍) is equivalent to InfoNCE

• InfoNCE = −∑"#!% log
&'((* + ># *+ >#( 	

"/$/)
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,	the	distribution	of	𝑃 ⋅; 𝐾7
• InfoNCE=−∑"#!% log𝑄","(
• 𝑖, 𝑖B are sampled in data augmentation, so we are optimizing
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𝐻#$(𝑍) is equivalent to spectral clustering 
(Van Assel et al. 2022)
• 𝐻01 𝑍 = min

/
−∑ #,$ ∈ " !𝑊#,$ log 𝑘 𝑍# − 𝑍$ + log 𝑆 𝑍

• _𝑊 = 𝐸9&∼; ⋅;8 𝑊>
• 𝑆 𝑍 = ∑9 𝑠 𝑍,𝑊 , punish solutions like 𝑍 = 𝟎, as 𝟎 is valid for all 𝑊, 

which gives larger 𝑃(𝑍)
• Since 𝑘 is Gaussian, this becomes 

min
/
𝑡𝑟 𝑍7𝐿 𝜋 𝑍 + log 𝑆 𝑍

• Since 𝐸9&∼; ⋅;8 𝐿 𝑊> = 𝐿 𝜋
• Role of projection head?



Can we replace Gaussian kernel?

•     is the similarity between the query and the contrastive sample

Minimize the worst case assignment diversity

Introducing 𝜏 as Lagrangian dual variable will give the following

y i



New Losses with Our Anlysis

• The kernel used in representation space can be changed. We use 
kernel in expoential family and construct new ones. 



Extension to CLIP
• CLIP samples 𝑁 image-text pairs, 

and maps every image with its 
matched text (and vice versa)
• Using InfoNCE loss

• We prove:
• CLIP runs spectral clustering on 

this bipartite graph

• Extension: 
• Explaining LaCLIP 



Thank you!


